327 research outputs found

    THE EQUIVALENCE OF EVOLUTIONARY GAMES AND DISTRIBUTED MONTE CARLO LEARNING

    Get PDF
    This paper presents a tight relationship between evolutionary game theory and distributed intelligence models. After reviewing some existing theories of replicator dynamics and distributed Monte Carlo learning, we make formulations and proofs of the equivalence between these two models. The relationship will be revealed not only from a theoretical viewpoint, but also by experimental simulations of the models by taking a simple symmetric zero-sum game as an example. As a consequence, it will be verified that seemingly chaotic macro dynamics generated by distributed micro-decisions can be explained with theoretical models.Research Methods/ Statistical Methods,

    Agent-Based Emergency Evacuation Simulation with Individuals with Disabilities in the Population

    Get PDF
    Catastrophic events have raised numerous issues concerning how effectively the built environment accommodates the evacuation needs of individuals with disabilities. Individuals with disabilities represent a significant, yet often overlooked, portion of the population disproportionately affected in emergency situations. Incorporating disability considerations into emergency evacuation planning, preparation, and other activities is critical. The most widely applied method used to evaluate how effectively the built environment accommodates emergency evacuations is agent-based or microsimulation modeling. However, current evacuation models do not adequately address individuals with disabilities in their simulated populations. This manuscript describes the BUMMPEE model, an agent-based simulation capable of classifying the built environment according to environmental characteristics and simulating a heterogeneous population according to variation in individual criteria. The method allows for simulated behaviors which more aptly represent the diversity and prevalence of disabilities in the population and their interaction with the built environment. Comparison of the results of an evacuation simulated using the BUMMPEE model is comparable to a physical evacuation with a similar population and setting. The results of the comparison indicate that the BUMMPEE model is a reasonable approach for simulating evacuations representing the diversity and prevalence of disability in the populationAgent-Based Simulation, Individual-Based Simulation, Disability, Emergency Egress, Evacuation, Reinforcement Learning

    Efficient and Explainable Graph Neural Architecture Search via Monte-Carlo Tree Search

    Full text link
    Graph neural networks (GNNs) are powerful tools for performing data science tasks in various domains. Although we use GNNs in wide application scenarios, it is a laborious task for researchers and practitioners to design/select optimal GNN architectures in diverse graphs. To save human efforts and computational costs, graph neural architecture search (Graph NAS) has been used to search for a sub-optimal GNN architecture that combines existing components. However, there are no existing Graph NAS methods that satisfy explainability, efficiency, and adaptability to various graphs. Therefore, we propose an efficient and explainable Graph NAS method, called ExGNAS, which consists of (i) a simple search space that can adapt to various graphs and (ii) a search algorithm that makes the decision process explainable. The search space includes only fundamental functions that can handle homophilic and heterophilic graphs. The search algorithm efficiently searches for the best GNN architecture via Monte-Carlo tree search without neural models. The combination of our search space and algorithm achieves finding accurate GNN models and the important functions within the search space. We comprehensively evaluate our method compared with twelve hand-crafted GNN architectures and three Graph NAS methods in four graphs. Our experimental results show that ExGNAS increases AUC up to 3.6 and reduces run time up to 78\% compared with the state-of-the-art Graph NAS methods. Furthermore, we show ExGNAS is effective in analyzing the difference between GNN architectures in homophilic and heterophilic graphs

    Dynamics of Spatial Pattern Formation: Cases of Spikes and Droplets

    Get PDF
    This thesis studies the gradient system that forms spatial patterns such that the minimum distances of pairs among various points are maximized in the end. As this problem innately involves singularity issues, an extended system of the gradient system is proposed. Motivated by the spatial pattern suggested by a numerical example, this extended system is applied to a three-point problem and then to a two-point problem in a quotient space of R2 modulo a lattice
    • …
    corecore